skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kalin, Latif"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Human‐induced nitrogen–phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio. Our study used a data‐model integration framework to evaluate N and P dynamics and the potential for long‐term accumulation or release of internal soil nutrient legacy stores to alter the ratio of N and P transported down the rivers. We show that the longer residence time of P in terrestrial ecosystems results in a much slower release of P to coastal oceans than N. If contemporary nutrient sources were reduced or suspended, P loading sustained by soil legacy P would decrease much slower than that of N, causing a decrease in the N and P loading ratio. The longer residence time of P in terrestrial ecosystems and the increasingly important role of soil legacy nutrients as a loading source may explain the decreasing N:P loading ratio in the Mississippi River Basin. Our study underscores a promising prospect for N loading control and the urgency to integrate soil P legacy into sustainable nutrient management strategies for aquatic ecosystem health and water security. 
    more » « less
  2. Abstract Phosphorus (P) control is critical to mitigating eutrophication in aquatic ecosystems, but the effectiveness of controlling P export from soils has been limited by our poor understanding of P dynamics along the land‐ocean aquatic continuum as well as the lack of well‐developed process models that effectively couple terrestrial and aquatic biogeochemical P processes. Here, we coupled riverine P biogeochemical processes and water transport with terrestrial processes within the framework of the Dynamic Land Ecosystem Model to assess how multiple environmental changes, including fertilizer and manure P uses, land use, climate, and atmospheric CO2, have affected the long‐term dynamics of P loading and export from the Mississippi River Basin to the Gulf of Mexico during 1901–2018. Simulations show that riverine exports of dissolved inorganic phosphorus (DIP), dissolved organic phosphorus, particulate organic phosphorus (POP), and particulate inorganic phosphorus (PIP) increased by 42%, 53%, 60%, and 53%, respectively, since the 1960s. Riverine DIP and PIP exports were the dominant components of the total P flux. DIP export was mainly enhanced by the growing mineral P fertilizer use in croplands, while increased PIP and POP exports were a result of the intensified soil erosion due to increased precipitation. Climate variability resulted in substantial interannual and decadal variations in P loading and export. Soil legacy P continues to contribute to P loading. Our findings highlight the necessity to adopt effective P management strategies to control P losses through reductions in soil erosion, and additionally, to improve P use efficiency in crop production. 
    more » « less